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ABSTRACT

We derive the expectation value for the maximum stellar mass (mmax) in an ensemble of N stars, as
a function of the IMF upper-mass cutoff (mup) and N . We statistically demonstrate that the upper
IMF of the local massive star census observed thus far in the Milky Way and Magellanic Clouds clearly
exhibits a universal upper mass cutoff around 120− 200 M⊙ for a Salpeter IMF, although the result is
more ambiguous for a steeper IMF.

Subject headings: stars: early-type — stars: fundamental parameters — stars: mass function — stars:
statistics — open clusters and associations — galaxies: stellar content

1. INTRODUCTION

The upper mass limit to the stellar initial mass func-
tion (IMF) is a critical parameter in understanding stellar
populations, star formation, and massive star feedback in
galaxies. To date, the largest empirical mass estimate for
an individual star is around 200 − 250 M⊙ for the Pis-
tol Star (Figer et al. 1998) near the Galactic Center, and
around 120 − 200 M⊙ for the most massive stars in the
Large Magellanic Cloud (e.g., Massey & Hunter 1998). In
practice, most applications assume an upper mass limit
to the IMF of mup ∼ 100 to 150 M⊙. However, there is
some confusion on whether the apparent observed upper
limit simply represents a statistical limit owing to a lack of
sampled stars in individual clusters (Massey 2003; Massey
& Hunter 1998; Elmegreen 1997).

Before the advent of the Hubble Space Telescope (HST),
stars with extremely high masses ∼> 1000 M⊙ were sug-
gested to exist. The dense stellar knot R136a in the 30 Do-
radus star-forming region of the LMC was the best-known
candidate for harboring such a star (Cassinelli, Mathis, &
Savage 1981). The viable candidates for these supermas-
sive stars were eventually resolved by HST and ground-
based imaging into smaller stars within the conventionally
observed mass range (e.g., Weigelt et al. 1991; Heydari-
Malayeri, Remy, & Magain 1988). In recent years, how-
ever, the possibility of supermassive stars is receiving re-
newed attention as a possible mode of star formation in
the early universe (e.g., Bond, Arnett, & Carr 1984; Lar-
son 1998; Bromm, Kudritzki & Loeb 2001).

It is therefore important to clarify expectations for the
highest-mass stars compared to the existing observations.
Elmegreen (2000) quantitatively demonstrates that, in the
absence of an upper-mass cutoff, stellar masses should be
observed up to 40, 000 M⊙ for the entire Milky Way, based
on estimates for the current star formation rate and molec-
ular gas mass. Here, we derive the behavior of the ex-
pectation values for the most massive stars and demon-
strate that, for a universal IMF, current observations in-
deed show the existence of an upper-mass limit around
mup ∼ 120 − 200 M⊙.

2. THE EXPECTATION VALUE 〈mmax〉

Because of the decreasing power law form of the IMF,
the characteristic mass of the largest star formed in clus-
ters of N stars decreases as N decreases. Figure 1 demon-
strates this effect with a Monte Carlo simulation. N
is drawn for individual star clusters from the universal
power-law distribution in N (e.g., Oey & Clarke 1998;
Elmegreen & Efremov 1997):

n(N) dN ∝ N−2 dN , (1)

and the stellar masses for each cluster of N stars is drawn
from the Salpeter (1955) IMF, within a mass range of 20
to 100 M⊙:

φ(m) dm ∝ m−2.35 dm . (2)

Figure 1 shows the distribution of the most massive star in
each cluster, mmax vs log N . For single stars, we confirm
that the bin of log N = 0 is described simply by the IMF
(equation 2). It is apparent that for large N , one can ex-
pect that mmax ≃ mup, but that for small N , the typical
most massive star is much lower in mass. For N = 1, the
typical mmax is the mean of the IMF, which is 37 M⊙ for
the distribution of 20 ≤ m ≤ 100 M⊙ used in Figure 1.

We can analytically derive the expectation value 〈mmax〉
for the most massive star in an ensemble of N stars as fol-
lows. For N stars, the probability that all are in the mass
range 0 to M is,

P (0, M) =

[

∫

M

0

φ(m) dm

]N

, (3)

where φ(m) corresponds to the IMF, i.e., a probability dis-
tribution function whose integral is unity. It follows that
the probability that all the stars are in the mass range 0
to M + dM is,

P (0, M+dM) ≃

[

∫ M

0

φ(m) dm

]N

+
d

dM

[

∫ M

0

φ(m) dm

]N

dM

(4)
1



2 Stellar Upper Mass Limit

Fig. 1.— Monte Carlo simulation showing the maximum stellar mass mmax per cluster vs the number of stars log N per cluster for 5000
clusters in a distribution of N given by equation 1. A Salpeter IMF is adopted with stellar masses between 20 – 100 M⊙ in this simulation.

by Taylor expansion. Thus we see that the probability
that the most massive star is in the range M to M + dM
is,

P (M, M + dM) =
d

dM

[

∫ M

0

φ(m) dm

]N

dM , (5)

and the expectation value for the most massive star is,

〈mmax〉 =

∫

mup

0

M
d

dM

[

∫

M

0

φ(m) dm

]N

dM . (6)

Integrating by parts, this yields,

〈mmax〉 = mup −

∫ mup

0

[

∫ M

0

φ(m) dm

]N

dM . (7)

For large N , equation 7 confirms that 〈mmax〉 → mup, cor-
responding to an IMF that is well-sampled up to the upper
mass limit (termed “saturated” by Oey & Clarke 1998).

We numerically integrate equation 7 using a lower mass
limit mlo = 10 M⊙ instead of 0, and assuming the Salpeter
IMF. Figure 2 shows the expectation value for the most
massive star 〈mmax〉 vs the upper mass limit mup for
N = 100, 250, and 1000 stars (solid lines). The dotted
line shows the identical relation 〈mmax〉 = mup for com-
parison. For lower N , 〈mmax〉 is smaller at any given mup,
as expected.

3. RESULTS

3.1. R136a

We start by comparing Figure 2 to the R136a region
in 30 Doradus, which, at an age of 1–2 Myr (Massey &
Hunter 1998), is sufficiently young that none of its stars
have expired yet as supernovae. We consider stars hav-
ing m > 10 M⊙, of which Hunter et al. (1997) found
N = 650 in this region. We however note that this value
represents a strong lower limit, since the star counts are
significantly incomplete between 10 and 15 M⊙ (Massey &
Hunter 1998). Figure 2 demonstrates that the expectation

value of mmax is considerably greater than the observed
maximum of ∼ 120− 200 M⊙ in R136a, unless mup is low
(≪ 500 M⊙). Weidner & Kroupa (2004) reached the same
conclusion from a similar analysis of R136a; Selman et al.
(1999) also suggested a cutoff using a less rigorous analy-
sis. We can furthermore assess the statistical significance
of this result by calculating p(mmax|mup), the probability
of obtaining an observed maximum stellar mass ≤ mmax

for a given mup. Table 1 lists p(mmax|mup) calculated from
equation 5 for R136a for a range of mup. This demon-
strates the negligible likelihood (< 10−5) that R136a is
drawn from a population which extends to 1000 M⊙.

The results of Weidner and Kroupa (2004), and those
presented here, do not support the suggestion by Massey
(2003) and Massey & Hunter (1998) that the upper IMF
in the R136a is consistent with mup = ∞. Massey &
Hunter (1998) found that the penultimate mass bin in
the empirical mass function is fully consistent with the
Salpeter slope. However, they omit from their mass func-
tion, and from their analysis, stars with inferred masses
> 120 M⊙, because the lack of stellar models in the grid
preclude reliable mass determinations. For the two effec-
tive temperature scales they adopted, there are 2 or 9 of
these omitted, most-massive stars. Although we do not
know the exact masses, their numbers are sufficient to de-
termine whether an upper mass cutoff to the IMF power
law exists. For a Salpeter IMF, in the absence of an upper
mass cutoff, there should be a total of 1.7 times more stars
at m > 120 M⊙ than are found in the the mass bin 85 –
120 M⊙. Massey & Hunter (1998) count (8, 11) stars in
the latter mass bin, therefore implying that (14, 19) stars
should be found at higher masses. This is significantly
more than the (2, 9) stars found. Thus, R136a exhibits a
cutoff around 120 − 200 M⊙, consistent with the finding
by Weidner & Kroupa (2004).

3.2. A sample of young OB associations

Although a truncated IMF in R136a seems conclusively
demonstrated, it is possible that the dense, rich cluster en-
vironment of this region represents a special case. Can we
draw a similar conclusion from a wider sample of ordinary
OB associations? To examine this further, we consider the
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Fig. 2.— The expectation value 〈mmax〉 vs upper mass limit mup, for N = 100, 250, and 1000 stars having masses above mlo = 10 M⊙,
assuming a Salpeter IMF. The dotted line shows mmax = mup for comparison.

upper IMF from the substantial sample of OB associations
that have been uniformly studied by Massey and collabora-
tors, who estimated stellar masses from spectroscopic clas-
sifications. Massey, Johnson, & DeGioia-Eastwood (1995)
tabulate the numbers of stars having m ≥ 10 M⊙ in the
Milky Way and LMC associations. To minimize the possi-
bility that the most massive stars have already expired as
supernovae, we count only stars in OB associations with
ages ≤ 3 Myr. Table 1 shows the observed N(≥ 10 M⊙)
and mmax for these objects.

We now compute p(mmax|mup) for all the objects (Ta-
ble 1). These show that, although none of these regions
individually provide strong constraints on the upper mass
cutoff, they collectively point to a conclusion similar to
that found for R136a. The total N = 263 stars, for which
inspection of Figure 2 again shows that the observed max-
imum stellar masses imply that mup should not exceed
a few hundred M⊙. Elmegreen (2000) reached a similar
conclusion based on the lack of supermassive stars in the
entire population of the Milky Way. In considering the
total of 263 stars, or Milky Way population, we assume
that the IMF is a universal probability distribution func-
tion that is independent of specific conditions in individ-
ual clusters and parent molecular clouds. Indeed, the IMF
is conventionally treated as a universal function (see, e.g.,
Elmegreen 2000). We also emphasize that our total counts
of N are conservative lower limits, since additional young
massive stars can be counted from associations studied by
other authors. We chose not to include these additional
stars in the interest of maintaining a uniform and well-
understood sample.

Furthermore, we can now evaluate the total probabili-
ties P that the values of p(mmax|mup) represent uniform
distributions between 0 and 1, as expected for any uni-
versal mup. For example, we would expect 10% of the
regions to fall into the category where p(mmax|mup) was
≤ 0.1, 20% to have a p(mmax|mup) of ≤ 0.2, and so
on. Figure 3 shows, for each assumed mup of the par-
ent IMF, the distribution of p(mmax|mup) for the individ-
ual regions. It is evident that for higher values of mup, the
values of p(mmax|mup) are unacceptably clustered towards
small values. A K-S test confirms this conclusion, yielding

probabilities that these values are uniformly distributed,
of P < 0.002, < 0.02, < 0.12, and < 0.47 for, respectively,
mup = 104, 200, 150, and 120 M⊙. We also compute P
for an adopted observed mmax = 200 M⊙, as might be pos-
sible for Tr 14/16 and R136a (Table 1). Figure 4 shows the
respective results in this case: P < 0.002, < 0.002, 0.47,
and < 0.92 for mup = 104, 103, 200, and 150 M⊙. We
therefore see that mup = ∞, and even 103 M⊙, are effec-
tively ruled out. Hence the results from this wider total
sample of OB associations points to an upper-mass limit
to the IMF around the observed values of 120 − 200 M⊙.

4. CONCLUSION

We have analyzed the upper IMF in a sample of young,
nearby OB associations that best represents stellar census
data in this regime. The clusters are young enough that
their highest-mass members remain present, and the stel-
lar masses are spectroscopically determined by Massey and
collaborators (Massey et al. 1995; Massey & Hunter 1998).
Our results provide clear evidence for an upper truncation
in the IMF. While this result has been previously noted by
Weidner & Kroupa in the case of R136a, we show here that
it also applies to a much wider sample of OB associations.
We have furthermore quantified the statistical significance
of such statements. For example, we find that the proba-
bility that the stellar population of R136a is drawn from a
parent distribution having mup= 104 M⊙ is < 10−5, and
for other associations the probability is only a few percent.

It should be noted that our results are sensitive to the
slope of the IMF for stars more massive than 10 M⊙. In
this mass range, it is often reported that the IMF power-
law exponent is close to the Salpeter value ∼ −2.35 (e.g.,
Massey 2003; Schaerer 2003; Kroupa 2002). However,
should the slope through some systematic observational
bias be significantly steeper, then our demonstration of
an upper-mass cutoff becomes less vivid. For example,
we find that adopting an IMF slope of −2.8 yields an
aggregate probability that the clusters originate from an
IMF having mup= 104 M⊙ of P < 0.30, contrasted to
P < 0.002 for the Salpeter slope. Conversely, for a parent
IMF slope flatter than the Salpeter value, the existence of
an upper-mass cutoff is even more strongly demonstrated.
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Table 1

Sample of OB Associations

Name N(> 10 M⊙) mmax p(104) p(103) p(200) p(150) p(120)

R136a a 650 120 10−10 10−10 10−5 0.002 1.000
R136a b 650 200 10−5 10−5 1.000 · · · · · ·
Berkeley 86 10 40 0.188 0.192 0.224 0.244 0.268
NGC 7380 11 65 0.400 0.409 0.486 0.534 0.592
IC 1805 24 100 0.335 0.350 0.510 0.626 0.784
NGC 1893 19 65 0.206 0.213 0.288 0.338 0.404
NGC 2244 12 70 0.407 0.416 0.502 0.556 0.623
Tr 14/16 a 82 120 0.055 0.064 0.231 0.464 1.000
Tr 14/16 b 82 200 0.236 0.276 1.000 · · · · · ·
LH 10 65 90 0.032 0.037 0.102 0.176 0.324
LH 117/118 40 100 0.161 0.174 0.326 0.458 0.666

aValues obtained by adopting 120 M⊙ for the most massive observed stars.

aValues obtained by adopting 200 M⊙ for the most massive observed stars.

Fig. 3.— Distribution of p(mmax|mup) for the sample of OB associations in Table 1, adopting mmax = 120 M⊙ for R136a and Tr 14/16.
The aggregate probability that these distributions originate from a uniform distribution are P < 0.002, < 0.02, < 0.12, and < 0.47 for,
respectively, mup = 104, 200, 150, and 120 M⊙.
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Fig. 4.— Same as Figure 3, but adopting an observed mmax for R136a and Tr 14/16 of 200 M⊙. The aggregate probability that these
distributions originate from a uniform distribution between 0 and 1 are P < 0.002, < 0.002, < 0.47, and < 0.92 for, respectively, mup

= 104, 103, 200, and 150 M⊙.

For R136a, p(104) = 6 × 10−4 for the steeper slope (cf.
Table 1), which is still a negligible probability. Weidner &
Kroupa (2004) examine the influence of the slope in more
detail.

Thus, given the standard Salpeter slope for massive
stars, it is hard to escape the conclusion that the IMF
is truncated near mup ∼ 120 − 200 M⊙, based on this
analysis. If these results are real, the only other possi-
bilities are that the IMF is not universal, or there is an
extreme selection effect that prevents our observations of
the most massive stars. We note that mup need not be
an absolute limit, but represents at least a dramatic drop
from the power-law form of the IMF. Our conclusion de-
pends on the assumption that the highest mass stars have

not already expired, and it therefore depends critically on
the reliability of evolutionary models for the most mas-
sive stars, and on the reliability with which one can assign
ages to OB associations. It also assumes that the stars
in the OB associations are coeval. Should the star for-
mation process indeed be suppressed at high masses, as
suggested by our results, a major goal for theorists will
be to identify the physics, e.g., plausibly associated with
stellar feedback, that introduces this mass scale into the
star formation process.

We are pleased to acknowledge discussions with Phil
Massey and Don Figer. We also thank the referee, Rolf
Kudritzki, for useful comments.
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